HP 1660E/ES/EP Series Logic Analyzer key **Specifications and Characteristics** | HP Model Number | 1660E/ES/EP | 1661E/ES/EP | 1662E/ES/EP | 1663E/ES/EP | 1664A | |-----------------------------|--|---|-------------|-------------|--------| | State and Timing | 136 | 102 | 68 | 34 | 34 | | Channels | | | | | | | Timing Analysis | Transitional: 12 | 250 MHz all chann
25 MHz all channe
z half channels | | | | | State analysis speed | 100 MHz, all channels | | | | 50 MHz | | State Clock/Qualifiers | 6 | 6 | 4 | 2 | 2 | | Memory Depth
per Channel | 4k per channel, 8k in half-channel modes | | | | | | LAN Port | Standard for al | I E/ES/EP models | | | N/A | ### **HP 1660EP Series Pattern Generator Key Specifications and Characteristics** | HP Model Number | | 1660EP, 1661EP, 1662EP, 1663EP | | | |--------------------------|---------|--------------------------------|---------|--| | Maximum Clock Speed | 200 MHz | 100MHz | 50 MHz | | | Number of Data Channels | 16 | 32 | 32 | | | Memory Depth, in vectors | 258,048 | 258,048 | 258,048 | | | "IF" Command | No | No | Yes | | #### HP 1670E-Series Logic Analyzer Key **Specifications and Characteristics** | HP Model Number | 1670E | 1671E | 1672E | |------------------------------|--|-----------------------------|------------------| | State and Timing
Channels | 136 | 102 | 68 | | Timing Analysis | Conventional: | 125 MHz all channels, 250 M | Hz half channels | | State Analysis
Speed | 100 MHz, all channels | | | | State Clocks/
Qualifiers | 4 | 4 | 4 | | Memory Depth
per Channel | 1M per channel, 2M in timing half-channel mode | | | #### **HP 1660ES Series Oscilloscope Key Specifications and** Characteristics | HP Model Number | 1660ES, 1661ES | |---------------------|---------------------| | | 1662ES, 1663ES | | Channels | 2 | | Maximum Sample | 2 GSa/s per channel | | Rate | | | Bandwidth | dc to 500 MHz | | | (dc coupled) | | Rise Time | 700 ps | | Vertical Resolution | 8 bits | | Memory Depth per | 32k samples | | Channel | | Weight = 28.6 lbs. (13kg) Figure 3. Logic analyzer dimensions and weight Figure 2. Diagram of logic analyzer's front and rear panels ThinkJet models | Human Inte | rface | Alternate | The Epson FX80, LX80 | | Logic analyzer and | | |-----------------------|--|--------------------------------------|---|---|---|--| | Front Panel | A knob and keypad make up the front-panel human interface. Keys include control, menu, display navigation, and alpha-numeric entry functions. | Printers Supported Hard Copy Output | and MX80 printers with
an RS-232 or Centronics
interface are supported
in the Epson 8-bit
graphics mode. Screen images can be
printed in black and | and Data Files | that include configura-
tion and data informa-
tion (if present) are
encoded in a binary
format. They can be
stored to or loaded
from the hard disk drive | | | Mouse | A DIN mouse is shipped as standard equipment. It provides full instrument control. Knob functionality is replicated by holding down the right button | ouqui | white or color from all menus using the <i>Print</i> field. State or timing listings can be also be printed in full or part (starting from center screen) using the <i>Print All</i> selection. | Recording of
Acquisition
and Storage
Times | or a flexible disk. Binary format configuration/data files are stored with the time of acquisition and the time of storage. [1] | | | | and moving the mouse left or right. [1] | Mass Storage Files | | Acquisition Arming | | | | Keyboard | The logic analyzer can also be operated using | and Softwar | | Initiation | Arming is started by Run, Group Run, or the Port In BNC. | | | Input/Output | a DIN keyboard. Order
the HP Logic Analyzer
Keyboard Kit, model
number HP E2427B. [1] | Operating
System | resides in Flash ROM
and can be updated
from the flexible disk
drive or from the
internal hard disk | Cross Arming | Analyzer machines
and the oscilloscope
or pattern generator
can cross-arm each
other. | | | and Printing | All units ship with a | Mass Storage | Supported by an internal hard disk drive and by a 1.44 Mbyte, 3.5- | Output | An output signal is provided at the Port Out BNC. | | | | Centronics parallel
printer port, RS-232,
and HP-IB as standard
equipment. | | inch flexible disk drive.
Supports DOS and LIF
formats. [1] | PORT IN
Signal and
Connection | Port In is a standard
BNC connection.
The input operates at | | | LAN Interface | An Ethernet LAN inter-
face is standard. The
LAN interface comes | Screen Image
Files | An image file of any
display screen can be
stored to disk via the | | TTL logic signal levels.
Rising edges are valid
input signals. | | | | with both Ethertwist
and ThinLan connec-
tors. The LAN supports
FTP and PC/NFS con-
nection protocols. It
also works with X11 | | display's <i>Print</i> field in black & white or color TIFF, color PCX, or black & white Encapsulated PostScript™ (EPS) formats. | PORT OUT
Signal and
Connection | Port Out is a standard
BNC connection
with TTL logic
signal levels. A rising
edge is asserted as a
valid output. | | | Program-
mability | windows packages. [1] Each instrument is fully programmable from a computer via HP-IB, RS-232 and LAN connections. [1] | ASCII Data
Files | State or timing listings can be stored as ASCII files on a disk via the display's <i>Print</i> field. These files are equiva- | Skew
Adjustment | Correction factors for
nominal skew between
displayed timing and
oscilloscope signals
are built into the oper-
ating system. | | | HP Printer
Support | Printers which use the HP Printer Control Language (PCL) and have a parallel Centronics, RS-232 or HP-IB interface are supported: HP DeskJet, LaserJet, QuietJet, PaintJet, and Think let models | | lent in character width
and line length to hard-
copy listings printed via
the <i>Print All</i> selection. | | Additional correction for unit-by-unit variation can be made using the <i>Skew</i> field. An entered skew value affects the next (not the present) acquisition display. | | ^{1]} Please refer to HP 1664A Product Specifications and Characteristics on page 7. | 15 ns typical delay
from signal input to a
don't care logic
analyzer trigger. | |--| | 40 ns typical delay from signal input to an immediate oscilloscope trigger. | | 120 ns typical delay from logic analyzer trigger to signal output. | | 60 ns typical delay from oscilloscope trigger to signal output. | | nvironment | | 115 Vac or 230 Vac,
-22% to +10%, single
phase, 48-66 Hz, 320 VA
max | | Instrument, 0° to 50° C
(+32° to 122° F). Disk
media, 10° to 40° C
(+50° to 104°F). Probes
and cables, 0° to 65° C
(+32° to 149° F) | | Instrument, up to 95%, relative humidity at +40° C (+140° F). Disk media and hard drive, 8% to 85% relative humidity. | | To 3,048 m (10,000 ft) [1] | | Random vibrations
5–500 Hz,
10 minute per axis,
~ 0.3 g (rms). | | Random vibrations
5–500 Hz,10 minutes per
axis,~ 2.41 g (rms); and
swept sine resonant
search, 5–500 Hz,
0.75 g (0-peak),
5 minute resonant dwell
@ 4 resonances per
axis. | | | ^[1] Please refer to HP 1664A Product Specifications and Characteristics on page 7. | Physical Factors | | | |-------------------|------------------------------|--| | Safety | IEC 348/ HD 401, | | | | UL 1244, and | | | | CSA Standard C22.2 | | | | No. 231 (series M-89) | | | EMC | | | | CISPR 11:1 | 990/EN 55011 (1991): | | | Group 1 | Class A | | | IEC 801-2:1 | 991/EN 50082-1 (1992): | | | 4kV CD, | | | | IEC 801-3:1 | 984/EN 50082-1 (1992): 3 V/m | | | | 988/EN 50082-1 (1992): 1kV | | | | | | | Logic Analyzer Probes | | | |-----------------------|--------------------------------|--| | Input
Resistance | 100 kΩ ±2% | | | Input
Capacitance | approx. 8 pF
(see figure 4) | | High Frequency Model for Probe Inputs Figure 4 | Minimum
Input Voltage
Swing | 500 mV peak-to-peak | |-----------------------------------|--| | Minimum
Input
Overdrive | 250 mV or 30% of input
amplitude, whichever is
greater | | Threshold
Range | -6.0 V to +6.0 V in 50-mV increments | | Threshold
Setting | Threshold levels may be
defined for pods
(17-channel groups) on
an individual basis | | Threshold
Accuracy* | ± (100 mV +3% of
threshold setting) | | Input
Dynamic
Range | ± 10 V about the threshold | | Maximum
Input Voltage | ± 40 V peak | | +5 V
Accessory
Current | 1/3 amp maximum
per pod | |------------------------------|---| | Channel
Assignment | Each group of 34 channels (a pod pair) can be assigned to Machine 1, Machine 2 or remain unassigned. The HP 1663E/ES/EP and the HP 1664A do not have a Machine 2. | | State Analysis | | | | |----------------------------|-----------------------------------|--|--| | Maximum
State
Speed* | 100 MHz ^[1] all models | | | | Memory | | |-----------|--| | Depth per | | | Channel | | | HP 1660E/ES/
EP Series | Time tags on: | |---------------------------|---------------| | | 2k samples | | HP 1670E
Series | 1M samples standard
Time Tags On:
500k samples
Compare Mode On:
250k samples
Compare Mode
and Time Tags On: | |--------------------|---| | | 120k samples | | Clock edge is selectable
as positive, negative, or
both edges for each
clock. | State Clocks | ORed together and operate in single phase, two-phase demultiplexing, or two-phase mixed mode. Clock edge is selectable as positive, negative, or both edges for each | |--|--------------|--| |--|--------------|--| | clock. | | | | | |--------------------------|---|--|--|--| | State Clock
Qualifier | The high or low voltage level of up to 4 of the 6 clocks can be ANDed or ORed with the clock specification. | | | | | | | | | | | Setup/Hold* [4 | 1] | |----------------|-------------------------------| | one clock, | 3.5/0 ns to 0/3.5 ns | | one edge | (in 0.5 ns increments) | | | 100 | | one clock, | 4.0/0 ns to 0/4.0 ns | | both edges | (in 0.5 ns increments) | | multi-clock, | 4.5/0 ns to 0/4.5 ns | | multi-edge | (in 0.5 ns increments) | | mattreage | (iii 0.5 iis iiici eiiieiits) | | | | ^[2] Time may vary depending upon the mode of logic analyzer operation. ^{*} Warranted specification. | Minimum
State Clock | 3.5 ns | Time Covered
by Data [3] | Sample period × memory depth | Time Interval Accuracy | | |--|---|--|--|--|--| | Pulse Width* Minimum | 10.0 ns | Transitional
Timing | (HP 1660E/ES/EP Series only) Sample is stored | Sample
Period
Accuracy | ± 0.01% | | Master to
Master
Clock Time* [4] | | - | in acquisition memory only when the data changes. A time tag stored with each sample allows reconstruction of waveform display. Time covered by a full memory acquisition varies with the number of pattern changes in the data. | Channel-to- 2 ns typical, Channel Skew3 ns maximum | | | Minimum
Slave to
Slave
Clock Time [4] | 10.0 ns | T. 0. 1 | | Time Interval
Accuracy | ± (Sample Period
Accuracy + channel-
to-channel skew +
0.01% of time interval | | Minimum
Master to
Slave
Clock Time [4] | 0.0 ns | | | Maximum
Delay
After | reading) Sample Period 2-8 ns: 8.389 ms Sample Period > 8 ns: | | Minimum
Slave to Mast | | by Data [3] | 9.7 hrs./6.5 hrs.
maximum | Triggering | 1,048,575 × sample
period | | Clock Time [4] | 4.0/0 ns (fixed) | Maximum | 34.4 s | Trigger Specifications | | | Qualifiers
Setup/Hold [4] | . , , , | Time
Between
Transitions | | Trigger
Macros | Trigger setups can be selected from a cate- | | Tagging ^[5] | Counts the number of qualified states between each stored | Number of
Captured
Transitions [3] | 1023-2047/682-4094
Depending on input
signals | macros. E
shown in q
form and h
s descriptio
can be ch
er to creat
trigger sec | gorized list of trigger
macros. Each macro is
shown in graphical
form and has a written | | | state. Measurement can be shown relative to the previous state or relative to trigger. Max. count is 4.29 × 10 ⁹ . | Glitch
Capture
Mode | (HP 1660E/ES/EP Series
only.) Data sample and
glitch information is
stored every sample | | description. Macros can be chained together to create a custom trigger sequence. | | Time
Tagging ⁽⁵⁾ | Measures the time
between stored states,
relative to either the
previous state or to the | Maximum
Timing Speed | period.
125 MHz | Pattern
Recognizers | Each recognizer is the AND combination of bit (0,1, or X) patterns in each label. Ten pattern recognizers are avail- | | | trigger. Max. time
between states is | Sample
Period | 8 ns minimum, 8.38 ms
maximum | | able. | | | 34.4 sec. Min. time between states is 8 ns. | Minimum
Glitch Width* | 3.5 ns | Minimum
Pattern and
Range | >125 MHz timing modes:
13 ns + channel-to-
channel skew | | Time Tag
Resolution | 8 ns or 0.1% (whichever is greater) | Maximum
Glitch Width | Sample Period – 1 ns | Recognizer
Pulse Width | ≤125 MHz timing modes:
1.01 x (1 sample period
+1 ns + channel-to- | | Timing Ana | lysis | Memory | 2048 samples | | channel skew) | | Conventional
Timing | Data stored at selected sample rate across all | Depth per
Channel | | | | | timing channels. HP 1660 Series Sample 4 ns/2 ns minimum, | | Time Covered
by Data | Sample Period × 2048:
16.3 µs minimum,
17.1 sec maximum | [3] Full Channel /Half Channel Modes [4] Spacified for an input signal VH= - 0.9V, VL = - slew rate = 1V/ns, and threshold = -1.3V | | | Period [3]
HP 1670 Series
Sample
Period [3] | 8.38 ms maximum
s
8 ns/4 ns minimum,
41 ms/10 ms maximum | | | [5] Time or-state-tagging (Count Time or Count State) is available in the full-channel state mode. There is no speed penalty for tag use. Memory is haived when time or state tags are used unless a pod pair (34-channel group) remains unassigned in the Configuration menu. | | ^{*} Warranted specification. | Range
Recognizers | Recognize data which is
numerically between or
on two specified pat-
terns (ANDed combina- | Maximum
Sequencer
Speed | 125 MHz | Trigger | Displayed as a vertical dashed line in the timing waveform, state waveform and X-Y | |--------------------------------|---|-------------------------------|---|-------------------------|---| | | tion of zeros and/or ones). Two range recognizers are available. | State
Sequence
Levels | 12 | | chart displays and as
line 0 in the state listing
and state compare dis-
plays. | | Range Width | 32 channels | Timing | 10 | Activity | Provided in the | | Edge/Glitch
Recognizers | Trigger on glitch or edge on any channel. | Sequence
Levels | | Indicators | Configuration, State
Format, and Timing | | | Edge can be specified as rising, falling or either. | Timers | Timers may be Started,
Paused, or Continued at
entry into any sequence
level after the first. | | Format menus for moni-
toring device-under-
test activity while set-
ting up the analyzer. | | Edge/Glitch
Recognizers | 2 (in timing mode only) | Timers | 2 | Labels | Channels may be grouped together and | | Edge/Glitch
Recovery Time | Sample Period 2-8 ns:
e 28 ns | Timer Range | 400 ns to 500 seconds | | given a 6-character
name called a <i>label</i> . Up
to 126 labels in each | | | Sample Period > 8 ns:
20 ns + sample period | Timer
Resolution | 16 ns or 0.1% whichever is greater | | analyzer may be assigned with up to 32 | | Qualifier | A user-specified term
that can be any state, no
state, any recognizer,
(pattern, ranges or | Timer
Accuracy | ± 32 ns or ± 0.1%,
whichever is greater | | channels per label.
Trigger terms may be
given an 8-character
name. | | | edge/glitch), any timer, | Timer
Recovery Tim | 70 ns
e | Measureme | ent Functions | | | or the logical combina-
tion (NOT, AND, NAND, | | n, Measurement | Markers | Two markers (x and o) | | | | | | | | | | OR, NOR, XOR, NXOR) of the recognizers and | and Displa | y Functions | | are shown as dashed lines in the display. | | Branching | OR, NOR, XOR, NXOR) of
the recognizers and
timers. Each sequence level | - | | Time
Intervals | are shown as dashed lines in the display. The x and o markers measure the time | | Branching | OR, NOR, XOR, NXOR) of
the recognizers and
timers. Each sequence level
has a branching qualifi-
er. When satisfied, the | and Displa | y Functions Starts acquisition of data in specified trace mode. In single trace mode or | | are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or | | Branching | OR, NOR, XOR, NXOR) of
the recognizers and
timers. Each sequence level
has a branching qualifi- | and Displa
Run | y Functions Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and | | are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state | | Branching Occurrence Counters | OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next level. Each sequence | and Displa
Run | Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and displays the current acquisition data. For subsequent runs in repetitive mode, stop halts acquisition of | | are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or | | Occurrence | OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next | and Displa
Run | Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and displays the current acquisition data. For subsequent runs in repetitive mode, stop halts acquisition of data and does not change current display. Single mode acquires data once per trace | Intervals | are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state when time tagging is on). The x and o markers measure the number of tagged states between any two states (state only). The x or o marker can be used to locate the nth occurrence of a | | Occurrence | OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next level. Each sequence level has its own counter. The maximum occurrence count is | and Displa
Run
Stop | Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and displays the current acquisition data. For subsequent runs in repetitive mode, stop halts acquisition of data and does not change current display. Single mode acquires | Intervals Delta States | are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state when time tagging is on). The x and o markers measure the number of tagged states between any two states (state only). The x or o marker can be used to locate the | |
Statistics | x to o marker statistics | Data Display | | | label. When data display | |--------------------------------|---|---|---|--|---| | | are calculated for repetitive acquisitions. Patterns must be specified for both markers, and statistics are kept only when both patterns can be found in an acquisition. Statistics are minimum x to o time, maximum x to o time, average x to o time, and ratio of valid runs to total runs. | Display
Modes | State listing, state waveforms, state chart, state compare listing, compare difference listing, timing waveforms, timing listing, interleaved time-correlated listing of two state analyzers (time tags on), and time-correlated state listing with timing waveforms on the same display. | Range
Symbols
Symbol
Utility | is "Symbol", mnemonic is displayed where the bit pattern occurs. User can define a mnemonic covering a range of values. Symbolic information extracted from popular object module formats can also be used. | | Compare
Mode | Performs post-process- | State X-Y
Chart Display | | Number of
Symbols | 1000 maximum. | | Functions | ing bit-by-bit
comparison of the
acquired state data and | | versus states or another label (on x-axis). Both axes can be scaled. | System
Performance
Analysis | SPA includes state
histogram, state
overview and time inter- | | Compare
Image | compare image data. Created by copying a state acquisition into the compare image buffer. Allows editing of any bit in the compare image to a 1, X or O. | State
Waveform
Display | Displays state acquisitions in waveform format. | | val measurements to aid
in the software opti-
mization process. These
tools provide a statisti- | | | | Timing
Listing
Display | Displays timing acquisition in listing format. | - | tools provide a statisti-
cal overview of your
synchronous design. | | Compare
Image
Boundaries | Each channel (column) in the compare image can be enabled or disabled via bit masks in the compare image. Upper and lower ranges of states (rows) in the compare image can be specified. Any data bits that do not fall within the enabled channels and the specified range are not compared. | Timing
Waveform
Display Accumulate Overlay Mode | Waveform display is not erased between successive acquisitions. Multiple channels can be displayed on one waveform display line. When waveform size is set to large, the value represented by each | The HP 1664A Specifications and Characteristics The HP 1660E/ES/EP-series logic analyzer family. The HP 1664A has some specifications and characteristics that are different from the HP 1660E/ES/EP-series logic analyzers. The HP 1664A: Supports a maximum of 50 MHz state acquisition Weight 26 pounds (11.8 kg) Altitude To 15,000 ft (4,752 m) Boots from the floppy disk drive—it does not have flash ROM It cannot be upgraded to include an oscilloscope or pattern generator The mouse and keyboard connectors are HP HIL standard For the optional keyboard order HP E2427A It does not support the symbol utility It does not support the software performance analysis (SPA) software It does not have a real time clock It does not have a hard disk drive It does not have a LAN port | | | Stop
Measurement | Repetitive acquisitions may be halted when the comparison between the current state acquisition and the current compare image is equal or not equal. | Displayed
Waveforms | waveform is displayed inside the waveform in the selected base. 24 lines maximum on one screen. Up to 96 lines may be specified and scrolled through. | | | | Compare
Mode
Displays | Reference Listing display shows the compare image and bit masks; difference listing display highlights differences between the current state acquisition and the compare image. | Bases | Binary, octal, decimal, hexadecimal, ASCII (display only), userdefined symbols, two's complement. | | | | | | Symbols Pattern Symbols | User can define a
mnemonic for the spe-
cific bit pattern of a | | |